Rabu, 02 Oktober 2013

Jenis gerak melingkar

Jenis gerak melingkar

Gerak melingkar dapat dibedakan menjadi dua jenis, atas keseragaman kecepatan sudutnya \omega\!, yaitu:
  • gerak melingkar beraturan, dan
  • gerak melingkar berubah beraturan.

Gerak melingkar beraturan

Gerak Melingkar Beraturan (GMB) adalah gerak melingkar dengan besar kecepatan sudut \omega\! tetap. Besar Kecepatan sudut diperolah dengan membagi kecepatan tangensial v_T\! dengan jari-jari lintasan R\!
\omega = \frac {v_T} R
Arah kecepatan linier v\! dalam GMB selalu menyinggung lintasan, yang berarti arahnya sama dengan arah kecepatan tangensial v_T\!. Tetapnya nilai kecepatan v_T\! akibat konsekuensi dar tetapnya nilai \omega\!. Selain itu terdapat pula percepatan radial a_R\! yang besarnya tetap dengan arah yang berubah. Percepatan ini disebut sebagai percepatan sentripetal, di mana arahnya selalu menunjuk ke pusat lingkaran.
a_R = \frac {v^2} R = \frac {v_T^2} R
Bila T\! adalah waktu yang dibutuhkan untuk menyelesaikan satu putaran penuh dalam lintasan lingkaran \theta = 2\pi R\!, maka dapat pula dituliskan
v_T = \frac {2\pi R} T \!
Kinematika gerak melingkar beraturan adalah
\theta(t) = \theta_0 + \omega\ t
dengan \theta(t)\! adalah sudut yang dilalui pada suatu saat t\!, \theta_0\! adalah sudut mula-mula dan \omega\! adalah kecepatan sudut (yang tetap nilainya). E. Gerak melingkar berubah beraturan ===
Gerak Melingkar Berubah Beraturan (GMBB) adalah gerak melingkar dengan percepatan sudut \alpha\! tetap. Dalam gerak ini terdapat percepatan tangensial a_T\! (yang dalam hal ini sama dengan percepatan linier) yang menyinggung lintasan lingkaran (berhimpit dengan arah kecepatan tangensial v_T\!).
\alpha = \frac {a_T} R
Kinematika GMBB adalah
\omega(t) = \omega_0 + \alpha\ t \!
\theta(t) = \theta_0 + \omega_0\ t  + \frac12 \alpha\ t^2 \!
\omega^2(t) = \omega_0^2 + 2 \alpha\ (\theta(t) - \theta_0) \!
dengan \alpha\! adalah percepatan sudut yang bernilai tetap dan \omega_0\! adalah kecepatan sudut mula-mula.

Tidak ada komentar:

Posting Komentar